447 research outputs found

    3H and 3He calculations without angular momentum decomposition

    Full text link
    Results for the three nucleon (3N) bound state carried out using the "three dimensional" (3D) formalism are presented. In this approach calculations are performed without the use of angular momentum decomposition and instead rely directly on the 3D degrees of freedom of the nucleons. In this paper, for the first time, 3D results for 3^{3}He bound state with the inclusion of the screened Coulomb potential are compared to 3^{3}H calculations. Additionally, using these results, matrix elements of simple current operators related to the description of beta decay of the triton are given. All computations are carried out using the first generation of NNLO two nucleon (2N) and 3N forces from the Bochum - Bonn group.Comment: 33 pages, 11 pdf figure

    Theoretical uncertainties of the elastic nucleon-deuteron scattering observables

    Full text link
    Theoretical uncertainties of various types are discussed for the nucleon-deuteron elastic scattering observables at the incoming nucleon laboratory energies up to 200 MeV. We are especially interested in the statistical errors arising from uncertainties of parameters of a nucleon-nucleon interaction. The obtained uncertainties of the differential cross section and numerous scattering observables are in general small, grow with the reaction energy and amount up to a few percent at 200 MeV. We compare these uncertainties with the other types of theoretical errors like truncation errors, numerical uncertainties and uncertainties arising from using the various models of nuclear interaction. We find the latter ones to be dominant source of uncertainties of modern predictions for the three-nucleon scattering observables. To perform above mentioned studies we use the One-Pion-Exchange Gaussian potential derived by the Granada group, for which the covariance matrix of its parameters is known, and solve the Faddeev equation for the nucleon-deuteron elastic scattering. Thus beside studying theoretical uncertainties we also show a description of the nucleon-deuteron elastic scattering data by the One-Pion-Exchange Gaussian model and compare it with results obtained with other nucleon-nucleon potentials, including chiral N4^4LO forces from the Bochum-Bonn and Moscow(Idaho)-Salamanca groups. In this way we confirm the usefulness and high quality of the One-Pion-Exchange Gaussian force.Comment: 23 pages, 15 figures in 64 eps file

    Role of the total isospin 3/2 component in three-nucleon reactions

    Get PDF
    We discuss the role of the three-nucleon isospin T=3/2 amplitude in elastic neutron-deuteron scattering and in the deuteron breakup reaction. The contribution of this amplitude originates from charge-independence breaking of the nucleon-nucleon potential and is driven by the difference between neutron-neutron (proton-proton) and neutron-proton forces. We study the magnitude of that contribution to the elastic scattering and breakup observables, taking the locally regularized chiral N4LO nucleon-nucleon potential supplemented by the chiral N2LO three-nucleon force. For comparison we employ also the Av18 nucleon-nucleon potential combined with the Urbana IX three-nucleon force. We find that the isospin T=3/2 component is important for the breakup reaction and the proper treatment of charge-independence breaking in this case requires the inclusion of the 1S0 state with isospin T=3/2. For neutron-deuteron elastic scattering the T=3/2 contributions are insignificant and charge-independence breaking can be accounted for by using the effective t-matrix generated with the so-called "2/3-1/3" rule.Comment: 24 pages, 8 figures, 3 Table

    Nucleon-deuteron scattering with the JISP16 potential

    Full text link
    The nucleon-nucleon J-matrix Inverse Scattering Potential JISP16 is applied to elastic nucleon-deuteron (Nd) scattering and the deuteron breakup process at the lab. nucleon energies up to 135 MeV. The formalism of the Faddeev equations is used to obtain 3N scattering states. We compare predictions based on the JISP16 force with data and with results based on various NN interactions: the CD Bonn, the AV18, the chiral force with the semi-local regularization at the 5th order of the chiral expansion and with low-momentum interactions obtained from the CD Bonn force as well as with the predictions from the combination of the AV18 NN interaction and the Urbana IX 3N force. JISP16 provides a satisfactory description of some observables at low energies but strong deviations from data as well as from standard and chiral potential predictions with increasing energy. However, there are also polarization observables at low energies for which the JISP16 predictions differ from those based on the other forces by a factor of two. The reason for such a behavior can be traced back to the P-wave components of the JISP16 force. At higher energies the deviations can be enhanced by an interference with higher partial waves and by the properties of the JISP16 deuteron wave function. In addition, we compare the energy and angular dependence of predictions based on the JISP16 force with the results of the low-momentum forces obtained with different values of the momentum cutoff parameter. We found that such low-momentum forces can be employed to interpret the Nd elastic scattering data only below some specific energy which depends on the cutoff parameter. Since JISP16 is defined in a finite oscillator basis, it has properties similar to low momentum interactions and its application to the description of Nd scattering data is limited to a low momentum transfer region.Comment: 26 pages, 12 eps figures; Version accepted to Phys. Rev. C: text is shortened, few figures regarding the nucleon-deuteron elastic scattering observables are removed but a short discussion of the nucleon induced deuteron breakup cross section is added. Conclusions remain unchange

    Break-up channels in muon capture on 3He

    Get PDF
    The mu + 2H -> nu + n + n, mu + 3He -> nu + 3H, mu + 3He -> nu + n + d and mu + 3He -> nu + n + n + p capture reactions are studied with various realistic potentials under full inclusion of final state interactions. Our results for the two- and three-body break-up of 3He are calculated with a variety of nucleon-nucleon potentials, among which is the AV18 potential, augmented by the Urbana~IX three-nucleon potential. Most of our results are based on the single nucleon weak current operator. As a first step, we have tested our calculation in the case of the mu + 2H -> nu + n + n and mu + 3He -> nu + 3H reactions, for which theoretical predictions obtained in a comparable framework are available. Additionally, we have been able to obtain for the first time a realistic estimate for the total rates of the muon capture reactions on 3He in the break-up channels: 544 1/s and 154 1/s for the n + d and n + n + p channels, respectively. Our results have also been compared with the most recent experimental data, finding a rough agreement for the total capture rates, but failing to reproduce the differential capture rates.Comment: 29 pages, 18 figure

    Three-nucleon force effects in inclusive spectra of the neutron-deuteron breakup reaction

    Full text link
    We investigate the sensitivity of the non-exclusive nucleon induced deuteron breakup reaction to the three-nucleon interaction and distributions of three-nucleon force effects in inclusive spectra. To this end we solve the three-nucleon Faddeev equation at a number of incoming nucleon laboratory energies using the CD Bonn nucleon-nucleon interaction alone or combined with the 2{\pi}-exchange Tucson-Melbourne three-nucleon force. Based on these solutions energy spectra of an outgoing nucleon, at a specified detection angle as well as spectra integrated over that angle, are calculated. By integrating the spectra at a given angle over the energy of the outgoing nucleon the angular distributions of three-nucleon force effects in the breakup process are additionally obtained. Contrary to elastic nucleon-deuteron scattering, where at higher energies significant three-nucleon force effects were encountered for scattering angles around the minimum of the cross section, for the breakup process only moderate effects are found and they are restricted to forward angles. Results of the present investigation show that the large three-nucleon force effects found for some specific complete breakup configurations are reduced substantially in the incomplete spectra when averaging over contributing complete geometries is performed

    A new way to perform partial wave decompositions of few-nucleon forces

    Get PDF
    We formulate a general and exact method of partial wave decomposition (PWD) of any nucleon-nucleon (NN) potential and any three-nucleon (3N) force. The approach allows one to efficiently use symbolic algebra software to generate the interaction dependent part of the program code calculating the interaction. We demonstrate the feasibility of this approach for the one-boson exchange BonnB potential, a recent nucleon-nucleon chiral force and the chiral two-pion-exchange three-nucleon force. In all cases very good agreement between the new and the traditional PWD is found. The automated PWD offered by the new approach is of the utmost importance in view of future applications of numerous chiral N3LO contributions to the 3N force in three nucleon calculations.Comment: 10 pages, 6 figures (24 eps files

    The chiral long-range two-pion exchange electromagnetic currents in radiative nucleon-deuteron capture

    Get PDF
    The nucleon-deuteron radiative capture process is investigated using the chiral nuclear potentials and the electromagnetic currents developed by the Bochum-Bonn group. While the strong interaction is taken up to the next-to-next-to-leading order, the electromagnetic current consists of a single nucleon current, the leading one-pion exchange one and is supplemented by contributions from the long-range two-pion exchange current at next-to-leading-order. The theoretical predictions for the cross sections as well as analyzing powers show strong dependence on the values of regularization parameters. Only small effects of the three-nucleon force and the long-range two-pion exchange current are observed. The dependence on the choice of regularization parameters results in a big theoretical uncertainty and clearly points to the necessity to include corrections from higher orders of the chiral expansion both for the nuclear forces and currents.Comment: 10 pages, 5 figure

    Comprehensive investigation of the symmetric space-star configuration in the nucleon-deuteron breakup

    Full text link
    We examine a description of available cross section data for symmetric space star (SST) configurations in the neutron-deuteron (nd) and proton-deuteron (pd) breakup reaction using numerically exact solutions of the three-nucleon (3N) Faddeev equation based on two- and three-nucleon (semi)phenomenological and chiral forces. The predicted SST cross sections are very stable with respect to the underlying dynamics for incoming nucleon laboratory energies below 25\approx 25 MeV. We discuss possible origins of the surprising discrepancies between theory and data found in low-energy nd and pd SST breakup measurements.Comment: 30 pages, 12 figure

    The Tucson-Melbourne Three-Nucleon Force in the automatized Partial Wave Decomposition

    Get PDF
    A recently developed procedure for a partial-wave decomposition of a three-nucleon force is applied to the pi-pi, pi-rho and rho-rho components of the Tucson-Melbourne three-nucleon potential. The resulting matrix elements for the pi-pi and pi-rho components are compared with the values obtained using the standard approach to the partial-wave decomposition, in which the pi-rho expressions for the matrix elements are also derived and presented. Several numerical tests and results for the triton binding energy and the correlation function prove the reliability and efficiency of the new method
    corecore